Section 11.2: Series

Objective: In this lesson, you learn how to

 \Box define a series and determine its convergence or divergence using partial sums and analyze geometric series, as well as harmonic series.

I. Series

Definition: Infinite series or series

An **infinite series or series** is the sum of an infinite sequence $a_1 + a_2 + a_3 + \cdots$ and is denoted by

$$\sum_{n=1}^{\infty} a_n$$
 or $\sum a_n$.

Definition: Partial sums

If $\sum_{n=1}^{\infty} a_n$ is a series, then

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

is called its n^{th} **Partial sum**.

Remark: s_n is the partial sum of terms in the sequence $\{a_n\}$ from 1 to n, therefore,

$$s_1 = a_1,$$

$$s_2 = a_1 + a_2 = s_1 + a_2,$$

$$s_3 = a_1 + a_2 + a_3 = s_2 + a_3,$$

$$s_4 = a_1 + a_2 + a_3 + a_4 = s_3 + a_4.$$
 etc....

Example 1: Find the first five partial sum terms of $\sum_{i=1}^{n} \sqrt{2}$

$$\begin{aligned} \delta_1 &= 1 \\ S_2 &= 1 + 2 = 3 \\ S_3 &= 1 + 2 + 3 = S_2 + 3 = 3 + 3 = 6 \\ S_4 &= 1 + 2 + 3 + 4 = 6 + 4 = 10 \\ S_6 &= 1 + 2 + 5 + 4 + 5 = 10 + 5 = 15 \end{aligned}$$

Convergent and divergent

Given a series $\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$, let s_n denote its n^{th} partial sum $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$.

• The series $\sum a_n$ converges if the sequence of partial sums $\{s_n\}$ is convergent and we have

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a_i = \sum_{i=1}^\infty a_i = s$$

the number s is called **the sum of the series**.

• The series $\sum a_n$ diverges if the sequence of partial sums $\{s_n\}$ is divergent (i.e. $\lim_{n \to \infty} s_n =$ DNE).

Example 2: Is the series $\sum_{i=1}^{\infty} \sqrt[n]{convergent}$ or divergent? $\delta_{N} = 1 + 2 + 3 + \cdots + m = \frac{n (n+1)}{2}$

$$\lim_{n \to a} \delta n = \lim_{n \to a} \frac{n(n+1)}{2} = a div$$

$$\int_{i=1}^{\infty} \frac{a}{i} i s divergent$$

How To Shift a Series:

Example 3: Adjust the series

$$\sum_{n=4}^{\infty} \frac{(-1)^{n+1}}{n-3}, = \frac{(-1)^{5}}{1} + \frac{(-1)^{5}}{2} + \frac{(-1)^{7}}{3} + \cdots -$$

1+2+3+9+5+67 7 7-6 2

so that the index will now start at n = 1.

$$\sum_{n=4}^{\infty} \frac{(-1)^{n+1}}{n-3} = \sum_{n=1}^{\infty} \frac{(-1)^{n+4}}{n} = \frac{(-1)^{n+4}}{1} + \frac{(-1)^{n+4}}{2} + \frac{(-1)^{n+4}}{3} + \frac{(-$$

Definition: Geometric series

The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1}, \ a \neq 0,$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \quad |r| < 1$$

if $|r| \ge 1$, the geometric series is divergent

Proof: Consider the partial sums $S_n = a + ar + ar^2 + ar^2 + ar^4 + \cdots + ar^n$ $r S_n = arr + ar^2 + ar^3 + ar^4 + \cdots + ar^n + ar^n$ $S_n - \gamma S_n = \alpha - \alpha \gamma^{n+1}$ $S_{n}(1-r) = \alpha(1-r^{n+1})$ $S_{n} = \alpha(1-r^{n+1})$ (1-r)rtl -12 YZ1 $|f|| |r| < 1 \qquad \lim_{n \to \infty} r^{n+1} =$ $\frac{1}{17} \frac{1}{17} \frac$ $= -\frac{\sigma}{2}(1-\alpha)$ = -9(-a) = α

Example 4: Present the number $6.2828282 \cdots = 6.\overline{28}$ as a ratio of integers.

$$6.2r282r28 \dots = 6+ -28 + 0.0028 + 0.0030728 + 0.00300028 + \dots = 6+ \frac{28}{1800} + \frac{24}{1800080} + \frac{24}{1800$$

limin 2n = ()

Example 6: Find the sum of the following series

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \prod_{n=1}^{\infty} \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$r = \frac{1!4}{1/2} = -\frac{1}{2}$$

$$r = \frac{1}{1/2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$r = \frac{1!4}{1/2} = -\frac{1}{2}$$

$$r = \frac{1}{1/2} + \frac{1}{2} + \frac{1}{2}$$

$$|X| < 1$$

$$1 < x < 1$$

$$|X| 7 |$$

$$X < 1$$

$$X < 1$$

The sum if
$$2 < CC3$$
; then $a = 2C-5$; $r = 2C-5$
The sum $= \frac{a}{1-r} = \frac{2C-5}{1-(2c-5)} = \frac{2C-5}{-2c+6}$
For example: $c = 21/10$
The sum $= \frac{2 \cdot \binom{21}{10} - 5}{-2\binom{21}{10} + 6}$

 $-\frac{22-5}{15}$ +5 +5 +5 +5 $\frac{4}{2}$ 2 $-\frac{2}{2}$ 2

2c-5/21

Definition: Telescoping series

A **telescoping series** is a series where each term b_n can be written as

$$b_n = a_n - a_{n+1}$$

for some series b_n .

Notice: To find the sum, we have

$$S_n = b_1 + b_2 + b_3 + \ldots + b_n = (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + \ldots + (a_n - a_{n+1}) = a_1 - a_{n+1}.$$

Therefore,

$$S_n = a_1 - a_{n+1}$$

Thus, the telescoping series is convergent if $a_{n+1} \longrightarrow$ **finite number**, and the sum is

$$S = \lim_{n \to \infty} S_n = a_1 - \lim_{n \to \infty} a_{n+1}$$

£1 ~ 1 h ~ (n+2) = 0

Example 8: Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$

is convergent and find its sum.

$$\frac{1}{(n+1)(n+2)} = \frac{A}{(n+1)} + \frac{B}{(n+2)}$$

$$= \frac{1}{(n+1)(n+2)} = \frac{A}{(n+1)} + \frac{B}{(n+2)}$$

$$= \frac{1}{(n+1)} - \frac{1}{(n+2)}$$

$$= \frac{1}{(n+1)} - \frac{1}{(n+2)}$$

$$= \frac{1}{(n+1)(n+2)} = \frac{A}{(n+1)} - \frac{1}{(n+2)}$$

$$= \frac{A}{(n+1)(n+2)} = \frac{A}{(n+1)} - \frac{A}{(n+2)}$$

$$= \frac{A}{(n+1)(n+2)} = \frac{A}{(n+1)(n+2)} = \frac{A}{(n+1)(n+2)}$$

$$= \frac{A}{(n+1)(n+2)} = \frac{A$$

Sim n=0

Example 9: Show that the **harmonic**

$$\sum_{n=1}^{\infty} \frac{1}{n} = \underbrace{1 + \frac{1}{2}}_{n+1} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

is divergent.

$$S_{2} = 1 + \frac{1}{2}$$

$$S_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2} = 1 + \frac{2}{2}$$

$$S_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$> 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 1 + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

$$S_{16} = 1 + \frac{1}{5} + \frac{1}{3} + \dots + \frac{1}{16} > \dots = 1 + \frac{4}{2}$$

$$S_n > 1 + \frac{n}{2}$$

$$S = \lim_{n \to \infty} S_n \sum_{h \to \infty} \lim_{n \to \infty} 1 + \frac{h}{2} = \alpha$$

$$\lim_{n \to \infty} \int_{h \to$$

Theorem 1

If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

Note: The converse is not true ingeneral.

Test for Divergence. If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Remark:

- The statement follows from the theorem immediately preceding it, since if the series is not divergent, then it is convergent, and so $\lim_{n\to\infty} a_n = 0$.
- Note that if $\lim_{n\to\infty} a_n = 0$, the series $\sum_{n=1}^{\infty} a_n$ may converge or it may diverge.

Example 12: Determine whether the series is convergent or divergent. If it is convergent, find it sum

a.
$$\sum_{n=1}^{\infty} \frac{n-1}{3n-1}$$

$$a_{n} = \frac{n-1}{3n-1}$$

$$a_{n} = \frac{n-1}{3n-1}$$

$$a_{n} = \frac{1}{3n-1}$$

$$a_{n} = \frac{1}{3n$$

$$c \sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

$$h\left(\frac{h}{n+1}\right) = h\left(\lim_{n \to \infty} \frac{n}{n+1}\right) = h\left(\lim_{n \to \infty} \frac{n}{n+1}\right) = h\left(1\right) = 0$$

$$h \to \infty \quad h\left(\frac{n}{n+1}\right) = h\left(\frac{h}{n+1}\right) = h\left(\frac{h}{n+1}\right)$$

$$fest failed$$

$$S_{n} = \sum_{n=1}^{n} h\left(\frac{n}{n+1}\right) = \sum_{n=1}^{n} h\left(n\right) - h\left(\frac{h}{n+1}\right)$$

$$= \left(\frac{h}{h}\left(1\right) - \frac{h}{h}\left(n\right)\right) + \left(\frac{h}{n} - \frac{h}{n+1}\right) + \left(\frac{h}{n}\left(n\right) - \frac{h}{n}\left(n\right)\right) + \left(\frac{h}{n}\left(n\right) - \frac{h}{n}\left(n\right)\right)$$

$$S_{n} = -h\left(n+1\right)$$

$$S_{n} = -h\left(n+1\right)$$

$$\int_{n \to \infty}^{n} h\left(n+1\right) = -h\left(\lim_{n \to \infty} n+1\right)$$

$$= -h\left(n\right) = -h\left(\lim_{n \to \infty} n+1\right)$$

$$\int_{n \to \infty}^{n} h\left(n+1\right) = -h\left(\lim_{n \to \infty} n+1\right)$$

$$= -h\left(n\right) = -h\left(n+1\right)$$

Theorem.

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, then so are the series $\sum_{n=1}^{\infty} ca_n$ (where c is a constant), $\sum_{n=1}^{\infty} (a_n + b_n)$, and $\sum_{n=1}^{\infty} (a_n - b_n)$, and a. $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n.$

- b. $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$ c. $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n.$

Example 13: Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{5}{2^n} - \frac{26}{(n+1)(n+2)} \right)$?

$$\int_{N=1}^{Q} \frac{5}{2n} = \int_{n=1}^{Q} \frac{5}{2} \frac{1}{2} \left(\frac{1}{2}\right)^{n-1} = a = \frac{5}{2}, \quad r = \frac{1}{2} \quad b \quad |r| < 1$$

$$\int_{N=1}^{Q} \frac{5}{2n} = \frac{5}{2} \frac{1}{2} \frac{9}{2^{2}} \frac{9}{2^{2}} + r = \frac{5}{5/2} = 1/2$$

$$\int_{N=1}^{Q} \frac{5}{2^{n}} = \frac{5}{2} \frac{1}{2^{2}} \frac{9}{2^{2}} + r = \frac{5}{5/2} = 1/2$$

$$Gres \quad serv, \quad r = 1/2, \quad a = b/2 \quad b \quad snm = \frac{9}{1-r} = \frac{6/2}{1-1/2}$$

$$= [5]$$

$$\frac{d}{d} = \frac{26}{(n+1)(n+2)} = 26 \int_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$

= $26 \cdot \frac{1}{2} = 13$ from Example 8

$$\sum_{n=1}^{\infty} \frac{5}{2n} - \frac{26}{(n+1)(n+2)} = 5 - 13 = -8$$